Abstract
Starting from Rules A and B of a previous paper (I), it is shown that the grand partition function can be evaluated in terms of the statistical averages of the occupation number in momentum space. The final formulation is in terms of a simple variational principle. The procedure represents a concise and complete separation of the effect of the Bose-Einstein or Fermi-Dirac statistical character of the particles from the dynamical problem. In the case of Bose statistics, this formulation makes possible a systematic computation of all thermodynamic functions near the Bose-Einstein transition point in the gaseous phase. Applications to a system of hard spheres are discussed.