Short‐term lithium treatment enhances responsiveness of postsynaptic 5‐HT1A receptors without altering 5‐HT autoreceptor sensitivity: An electrophysiological study in the rat brain

Abstract
Short-term lithium administration to rats has previously been shown to enhance 5-HT neurotransmission through a modification of 5-HT neuron properties. In the first part of the present study, the effect of lithium on the function of terminal 5-HT autoreceptors was assessed by comparing in controls and lithium-treated rats the differential effect of two frequencies of stimulation (0.8 and 5 Hz) and that of methiothepin, a terminal 5-HT autoreceptor antagonist, on the effectiveness of the electrical activation of the ascending 5-HT pathway in suppressing dorsal hippocampus pyramidal neuron firing activity. Both procedures produced similar effects in controls and lithium-treated rats. In the second part of the study, the function of somatodendritic 5-HT autoreceptors was studied. The effect of intravenous LSD, an agonist of the somatodendritic 5-HT autoreceptor, on the firing activity of 5-HT neurons was not modified by the lithium treatment, whereas that of intravenous 8-OH-DPAT, a 5-HT1A receptor agonist, was increased two-fold. However, lithium did not alter the responsiveness of 5-HT neurons to direct microiontophoretic applications of 8-OH-DPAT as well as of LSD and 5-HT. It is concluded that short-term lithium treatment does not alter the function of terminal and somatodendritic 5-HT autoreceptors and that it enhances the sensitivity of subset of postsynaptic 5-HT1A receptors involved in controlling 5-HT neuron firing activity, presumably through a feedback loop.