Abstract
In addition to its role as a 9-cis retinoic acid receptor, RXR has an important role in the regulation of multiple hormonal pathways through heterodimerization with nuclear receptors. Here, we show that two orphan receptors, NGFI-B and NURR1, which have been shown previously to interact with DNA as monomers, also can heterodimerize with RXR. These heterodimers bind selectively to a class of retinoic acid response elements composed of direct repeats spaced by 5 nucleotides. In this respect they are similar to heterodimers formed between RXR and the receptor for all-trans retinoic acid, RAR. However, whereas RXR is inhibited in the RXR-RAR heterodimer, NGFI-B/NURR1 promote efficient activation in response to RXR ligands and therefore shift RXR from a silent to an active heterodimerization partner. These data show that NGFI-B and NURR1 can increase the potential of RXR to modulate gene expression in a ligand-dependent manner by allowing a distinct class of direct repeats to serve as specific RXR response elements. Because expression of both NGFI-B and NURR1 is rapidly induced by various growth factors, these findings also suggest a novel mechanism for convergence between vitamin A or retinoid and growth factor signaling pathways.