Expression of a functional glucose transporter in Xenopus oocytes

Abstract
A cDNA encoding the rat brain glucose transporter was inserted between the 5'' and 3'' untranslated regions from the Xenopus globin gene and downstream of an SP6 RNA polymerase start site. RNA synthesized from this vector was microinjected into oocytes from Xenopus laevis; this resulted in expression of the glucose transporter, as determined by both immunoblotting and the appearance of transport activity. The properties of the transporter were those expected from previous studies: it was glycosylated, and its activity, measured by 3-O-methylglucose transport, was inhibited by D-glucose and cytochalasin B, but not by L-glucose. The low level of endogenous glucose transport activity found in water-injected oocytes makes this a useful system in which to determine the kinetic parameters of transport. The Km for 3-O-methylglucose was found to be 20 mM under equilibrium exchange conditions. Despite the fact that oocytes exhibit insulin-dependent responses, insulin did not stimulate 3-O-methylgucose transport by injected oocytes.