The dynamics of a localized surfactant on a thin film

Abstract
We investigate the flow induced by a localized insoluble surfactant on a thin film. This problem is intended to model the behaviour of the lung's thin-film lining after an aerosol droplet lands on its surface. The surfactant-induced surface-tension gradients drive convection (Marangoni convection) within the film, disrupting the film surface and causing the surfactant to spread. The surfactant may also spread on the film's surface by surface diffusion without inducing convection. Gravity provides a restoring force that decreases film disturbances.Lubrication theory is employed to derive equations that describe the evolution of the film thickness and surfactant concentration. A nonlinear surface-tension equation of state describes the relationship between the surfactant concentration and the surface tension. Solutions of the evolution equations are found numerically using the method of lines and analytically under limiting cases of small and large surface diffusivity. The results elucidate the behaviour of the thin-film/surfactant system.We find that surface-tension-induced convection creates film disturbances that increase the film thickness near the surfactant's leading edge, and thins the film in the central region. Surface diffusion causes more rapid spreading of the surfactant, and decreases the film disturbances. Gravity decreases the film disturbances by creating bi-directional flow in the form of a ring vortex. This behaviour may have implications for the delivery of medications or toxins by aerosol inhalation.

This publication has 14 references indexed in Scilit: