• 1 January 1975
    • journal article
    • research article
    • Vol. 192 (1), 86-94
Abstract
Analogs of choline and three hemicholinium derivatives were studied as substrates for choline acetyltransferase (ChAc) and as substrates or inhibitors of the high-affinity choline transport system in rat brain synaptosomes. Hemicholiniums-3 and -15, but not terphenylhemicholinium-3, were substrates of ChAc. All three inhibit the high-affinity choline transport system, with I50 values of 0.08, 8.0 and 0.08 muM, respectively. Simple choline analogs with substituents on the beta-carbon atom were found to be very poor substrates for ChAc. N-alkyl analogs, mono-, di- and triethyl choline and N-hydroxyethyl pyrrolidinium methiodide (pyrrolcholine), and DL-alpha-methyl choline are substrates for ChAc and also inhibit choline transport, with I50 values between 2 to 6 muM.[3-H] choline, [3-H] monoethycholine and [3-H] pyrrolcholine were transported into synaptosomes by the choline high affinity system and metabolized to acetyl derivatives. The results indicated that choline transport is the rate-limiting step in the biosynthesis of acetylcholine and provide the basis for the development of a group of cholinergic false transmitters.