Tool Point Frequency Response Prediction for High-Speed Machining by RCSA

Abstract
The implementation of high-speed machining for the manufacture of discrete parts requires accurate knowledge of the system dynamics. We describe the application of receptance coupling substructure analysis (RCSA) to the analytic prediction of the tool point dynamic response by combining frequency response measurements of individual components through appropriate connections. Experimental verification of the receptance coupling method for various tool geometries (e.g., diameter and length) and holders (HSK 63A collet and shrink fit) is given. Several experimental results are presented to demonstrate the practical applicability of the proposed method for chatter stability prediction in milling.