Phycoerythrins of the Red Alga Callithamnion

Abstract
Phycoerythrins of several species of the higher red alga Callithamnion show virtually identical spectra, typical of R-phycoerythrins, with absorption maxima at 565, 539, and 497 nanometers. One species, Callithamnion roseum, produces a phycoerythrin lacking the peak at 539 nanometers. Comparison of a “typical” R-phycoerythrin from Callithamnion byssoides with the “atypical” phycoerythrin of C. roseum shows that both proteins carry 35 bilins per native molecule of 240,000 daltons; however, C. byssoides phycoerythrin carries 27.6 phycoerythrobilin and 7.3 phycourobilin groups, whereas C. roseum phycoerythrin carries 24.1 phycoerythrobilin and 10.9 phycourobilin groups. These differences in the relative amounts of the bilin prosthetic groups account in large measure for the differences between the absorption spectra of the native proteins. The ratio of phycoerythrobilin to phycourobilin in C. roseum phycoerythrin can be modulated by varying the light intensity during growth. Data on the physical, immunological and spectroscopic properties of Callithamnion phycoerythrins indicate that the variation in the relative number of the two bilin prosthetic groups does not affect significantly the conformation of the biliprotein.