Abstract
An easy, one-step procedure is proposed for the synthesis of highly porous carbon nanosheets with an excellent performance as supercapacitor electrodes. The procedure is based on the carbonization of an organic salt, i.e., potassium citrate, at a temperature in the 750–900 °C range. In this way, carbon particles made up of interconnected carbon nanosheets with a thickness of 2 g–1 range and electronic conductivities in the range of 1.7–7.4 S cm–1 (measured at 7.1 MPa). These materials behave as high-performance supercapacitor electrodes in organic electrolyte and exhibit an excellent power handling ability and a superb robustness over long-term cycling. Excellent results were obtained with the supercapacitor fabricated from the material synthesized at 850 °C in terms of both gravimetric and volumetric energy and power densities. This device was able to deliver ∼13 Wh kg–1 (5.2 Wh L–1) at an extremely high power density of 78 kW kg–1 (31 kW L–1) and ∼30 Wh kg–1 (12 Wh L–1) at a power density of 13 kW kg–1 (5.2 kW L–1) (voltage range of 2.7 V).