Can Photoplethysmography Variability Serve as an Alternative Approach to Obtain Heart Rate Variability Information?

Abstract
Heart rate variability (HRV), extracted from an electrocardiogram, is known to be a noninvasive indicator reflecting the dynamic interplay between perturbations to cardiovascular function and the dynamic response of the cardiovascular regulatory system. Photoplethysmography (PPG) is a noninvasive method to monitor arterial oxygen saturation on a continuous basis. Given the rich cardiovascular information in the PPG signal, and the ubiquity and simplicity of pulse oximetry, we are investigating the feasibility of acquiring dynamics pertaining to the autonomic nervous system from PPG waveforms. To do this, we are quantifying PPG variability (PPGV). Detailed algorithmic approaches for extracting accurate PPGV signals are presented. We compare PPGV to HRV by computing time and frequency domain parameters often associated with HRV measurements, as well as approximate entropy calculations. Our results demonstrate that the parameters of PPGV are highly correlated with the parameters of HRV. Thus, our results indicate that PPGV could be used as an alternative measurement of HRV.