Electron beam modeling and commissioning for Monte Carlo treatment planning
- 6 January 2000
- journal article
- Published by Wiley in Medical Physics
- Vol. 27 (1), 180-191
- https://doi.org/10.1118/1.598883
Abstract
A hybrid approach for commissioning electron beam Monte Carlo treatment planning systems has been studied. The approach is based on the assumption that accelerators of the same type have very similar electron beam characteristics and the major difference comes from the on-site tuning of the electron incident energy at the exit window. For one type of accelerator, a reference machine can be selected and simulated with the Monte Carlo method. A multiple source model can be built on the full Monte Carlo simulation of the reference beam. When commissioning electron beams from other accelerators of the same type, the energy spectra in the source model are tuned to match the measured dose distributions. A Varian Clinac 2100C accelerator was chosen as the reference machine and a four-source beam model was established based on the Monte Carlo simulations. This simplified beam model can be used to generate Monte Carlo dose distributions accurately (within 2%/2 mm compared to those calculated with full phase space data) for electron beams from the reference machine with various nominal energies, applicator sizes, and SSDs. Three electron beams were commissioned by adjusting the energy spectra in the source model. The dose distributions calculated with the adjusted source model were compared with the dose distributions calculated using the phase space data for these beams. The agreement is within 1% in most of cases and 2% in all situations. This preliminary study has shown the capability of the commissioning approach for handling large variation in the electron incident energy. The possibility of making the approach more versatile is also discussed.Keywords
This publication has 37 references indexed in Scilit:
- Clinical implementation of a Monte Carlo treatment planning systemMedical Physics, 1999
- Super‐Monte Carlo: A 3‐D electron beam dose calculation algorithmMedical Physics, 1996
- Measured electron energy and angular distributions from clinical acceleratorsMedical Physics, 1996
- A Monte Carlo investigation of electron-beam applicator scatterMedical Physics, 1995
- The application of correlated sampling to the computation of electron beam dose distributions in heterogeneous phantoms using the Monte Carlo methodPhysics in Medicine & Biology, 1993
- Optimal electron‐beam treatment planning for retinoblastoma using a new three‐dimensional Monte Carlo‐based treatment planning systemMedical Physics, 1992
- The role of Monte Carlo simulation of electron transport in radiation dosimetryInternational Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, 1991
- Experimental evaluation of a 2D and 3D electron pencil beam algorithmPhysics in Medicine & Biology, 1989
- Electron dose distributions in experimental phantoms: a comparison with 2D pencil beam calculationsPhysics in Medicine & Biology, 1987
- Multiple Scattering with Energy LossPhysical Review B, 1948