Abstract
Actions of endocannabinoids in the cerebellum can be demonstrated following distinct stimulation protocols in Purkinje cells. First, depolarization-induced elevations of intracellular Ca2+ lead to the suppression of neurotransmitter release from both inhibitory and excitatory afferents. In another case, postsynaptic group I metabotropic glutamate receptors (mGluRs) trigger a strong inhibition of the glutamatergic inputs from parallel and climbing fibers. Both pathways involve endocannabinoids retrogradely acting on type 1 cannabinoid receptors (CB1Rs) at presynaptic terminals. Here, we show that group I mGluR activation also depresses GABAergic transmission at the synapses between molecular layer interneurons and Purkinje cells. Using paired recordings, we found that application of the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine reduced the evoked IPSCs in Purkinje cells. This effect was independent of postsynaptic Ca2+ increases and was completely blocked by a CB1R antagonist.