Upregulation of a Silent Sodium Channel After Peripheral, but not Central, Nerve Injury in DRG Neurons
- 1 November 1999
- journal article
- research article
- Published by American Physiological Society in Journal of Neurophysiology
- Vol. 82 (5), 2776-2785
- https://doi.org/10.1152/jn.1999.82.5.2776
Abstract
After transection of their axons within the sciatic nerve, DRG neurons become hyperexcitable. Recent studies have demonstrated the emergence of a rapidly repriming tetrodotoxin (TTX)-sensitive sodium current that may account for this hyperexcitability in axotomized small (<27 μm diam) DRG neurons, but its molecular basis has remained unexplained. It has been shown previously that sciatic nerve transection leads to an upregulation of sodium channel III transcripts, which normally are present at very low levels in DRG neurons, in adult rats. We show here that TTX-sensitive currents in small DRG neurons, after transection of their peripheral axonal projections, reprime more rapidly than those in control neurons throughout a voltage range of −140 to −60 mV, a finding that suggests that these currents are produced by a different sodium channel. After transection of the central axonal projections (dorsal rhizotomy) of these small DRG neurons, in contrast, the repriming kinetics of TTX-sensitive sodium currents remain similar to those of control (uninjured) neurons. We also demonstrate, with two distinct antibodies directed against different regions of the type III sodium channel, that small DRG neurons display increased brain type III immunostaining when studied 7–12 days after transection of their peripheral, but not central, projections. Type III sodium channel immunoreactivity is present within somata and neurites of peripherally axotomized, but not centrally axotomized, neurons studied after <24 h in vitro. Peripherally axotomized DRG neurons in situ also exhibit enhanced type III staining compared with control neurons, including an accumulation of type III sodium channels in the distal portion of the ligated and transected sciatic nerve, but these changes are not seen in centrally axotomized neurons. These observations are consistent with a contribution of type III sodium channels to the rapidly repriming sodium currents observed in peripherally axotomized DRG neurons and suggest that type III channels may at least partially account for the hyperexcitibility of these neurons after injury.Keywords
This publication has 39 references indexed in Scilit:
- Glial cells have heart: rH1 Na+ channel mRNA and protein in spinal cord astrocytesGlia, 1998
- c-Jun Expression in Adult Rat Dorsal Root Ganglion Neurons: Differential Response after Central or Peripheral AxotomyExperimental Neurology, 1997
- Selective loss of slow and enhancement of fast Na+currents in cutaneous afferent dorsal root ganglion neurones following axotomyNeurobiology of Disease, 1995
- Sodium channels accumulate at the tips of injured axonsMuscle & Nerve, 1994
- Sodium channel mutations in paramyotonia congenita uncouple inactivation from activationNeuron, 1994
- Nerve growth factor regulates the abundance and distribution of K+ channels in PC12 cells.The Journal of cell biology, 1993
- Death of some dorsal root ganglion neurons and plasticity of others following sciatic nerve section in adult and neonatal ratsJournal of Comparative Neurology, 1989
- Functional expression of cloned cDNA encoding sodium channel IIIFEBS Letters, 1988
- PARÆSTHESIÆ FROM ECTOPIC IMPULSE GENERATION IN HUMAN SENSORY NERVESBrain, 1980
- Ongoing activity in peripheral nerves: The physiology and pharmacology of impulses originating from a neuroma☆Experimental Neurology, 1974