Manipulation of the Magnetic Properties of Magnetite−Silica Nanocomposite Materials by Controlled Stober Synthesis

Abstract
The paper describes the synthesis and characterization of the magnetic properties of magnetite/silica nanocomposites using a modified Stober method. Magnetite nanoparticles averaging 8-10 nm in diameter and stabilized with oleic acid in toluene were used as the magnetic component of the nanocomposites. SQUID magnetic measurements and ferromagnetic resonance spectroscopy measurements were performed at each stage of the synthesis to understand the properties of the formed composites. Changes of blocking temperature in ZFC/FC SQUID curves correlated with corresponding changes of the resonance field in the ferromagnetic spectra of the sample at each stage of formation. The paper concludes that it is possible to manipulate the magnetic properties of silica/magnetite composite materials by controlling their surface properties and silica coating thickness.