A novel pressure-jump apparatus for the microvolume analysis of protein–ligand and protein–protein interactions: its application to nucleotide binding to skeletal-muscle and smooth-muscle myosin subfragment-1
- 1 September 2002
- journal article
- Published by Portland Press Ltd. in Biochemical Journal
- Vol. 366 (2), 643-651
- https://doi.org/10.1042/bj20020462
Abstract
Reactions involving proteins frequently involve large changes in volume, which allows the equilibrium position to be perturbed by changes in pressure. Rapid changes in pressure can thus be used to initiate relaxation in pressure; however, this approach is seldom used, because it requires specialized equipment. We have built a microvolume (50μl) pressure-jump apparatus, powered by a piezoelectric actuator, based on the original design of Clegg and Maxfield [(1976) Rev. Sci. Instrum. 47, 1383–1393]. This equipment can apply pressure changes of ±20MPa (maximally) in time periods as short as 80μs and follow the resulting change in fluorescence signals. The system is relatively simple to use with fast (approx. 1min) exchange of samples. In the present study, we show that this system can perturb the binding of 2′(3′)-O-(N-methylanthraniloyl)-ADP to myosin subfragment-1(S1) from skeletal and smooth muscles. The kinetic data are consistent with previous work, and in addition show that, although 2′(3′)-O-(N-methylanthraniloyl)-ADP binds with a similar affinity to both proteins, the increase in molar volume for the skeletal-muscle S1 binding to ADP is half of that for the smooth-muscle protein. This high-volume change for smooth-muscle S1 may be related to the ability of ADP to induce a 23° tilt in the tail of S1 bound to actin.This publication has 21 references indexed in Scilit:
- Microsecond Folding of the Cold Shock Protein Measured by a Pressure-Jump TechniqueBiochemistry, 1999
- Interaction of Actin and ADP with the Head Domain of Smooth Muscle Myosin: Implications for Strain-Dependent ADP Release in Smooth MuscleBiochemistry, 1998
- X-ray crystal structure and solution fluorescence characterization of Mg·2′(3′)-O-(N-methylanthraniloyl) nucleotides bound to the Dictyostelium discoideum myosin motor domainJournal of Molecular Biology, 1997
- Kinetic Mechanism of a Monomeric Kinesin ConstructPublished by Elsevier ,1997
- Myosin isoforms show different strokes for different blokesNature Structural & Molecular Biology, 1996
- ADP release produces a rotation of the neck region of smooth myosin but not skeletal myosinNature Structural & Molecular Biology, 1996
- A 35-Å movement of smooth muscle myosin on ADP releaseNature, 1995
- The effect of hydrostatic pressure on the interaction of actomyosin subfragment 1 with nucleotidesBiochemical and Biophysical Research Communications, 1991
- Interaction of myosin subfragment 1 with fluorescent ribose-modified nucleotides. A comparison of vanadate trapping and SH1-SH2 crosslinkingBiochemistry, 1990
- Dynamic interaction between actin and myosin subfragment 1 in the presence of ADPBiochemistry, 1989