Increases in c-Jun N-Terminal Kinase/Stress-Activated Protein Kinase and p38 Activity in Monocyte-Derived Macrophages following the Uptake of Legionella pneumophila

Abstract
Legionella pneumophila , the causative agent of Legionnaires' disease, infects and replicates within a variety of eukaryotic cells. The purpose of the current study was to examine host cell signaling events immediately following uptake and early in the endocytic process (less than 1 h) following the phagocytosis of L. pneumophila . This examination focused on the protein kinase signal pathways to identify any aberrant signal(s) induced by L. pneumophila within its host, as a means to alter the normal endocytic pathway. The mitogen-activated protein kinase cascades are of interest due to their involvement in cellular regulation. The experiments were carried out with monocyte-derived macrophages (MDMs). All three mitogen-activated protein kinase cascades were activated when MDMs were inoculated with either Legionella strain (wild-type strain AA100 or dotA mutant GL10) or an Escherichia coli control. Whereas the avirulent treatments, GL10 and E. coli , exhibited a leveling off or a return to near basal levels of phosphorylation/activity of c-Jun N-terminal kinase by 60 min, the virulent strain AA100 exhibited a significantly increased level of activity through 60 min that was greater than that seen in GL10 ( P = 0.025) and E. coli ( P = 0.014). A similar trend was seen with p38 phosphorylation. Phosphorylation of mitogen-activated protein/ERK kinase (MEK) was decreased in strain AA100 compared to E. coli . Inhibition of the activity of either the stress-activated protein kinase/c-Jun N-terminal kinase or p38 pathway significantly decreased the ability of legionellae to replicate intracellularly, suggesting the necessity of these two pathways in its intracellular survival and replication.

This publication has 45 references indexed in Scilit: