Abstract
Combined transcutaneous PO2-PCO2 electrodes are described in which the interaction between the two electrodes due to OH- production at the O2 cathode has been eliminated. An anode of either anodized aluminum or platinum has been driven at a current equal to cathode current to force stoichiometric consumption of OH- at its rate of production. The AgCl reference electrode operates at zero current. O2 sensitivity was not significantly altered by electrolyte pH variation from 6.7 to 9.0 with variations by PCO2. These electrodes have been found stable both with and without spacers, and with electrolytes dissolved in 50–100% ethylene glycol. In 22 anesthetized patients, with electrode temperature of 43 degrees C (s refers to skin surface, a to arterial blood); PsO2 = 0.52PaO2 + 15 (range 54–300) (r = 0.66; Sy . x = 29.6; n = 46); and PsCO2 = 1.39PaCO2 + 2.1 (range 24–98) (r = 0.99; Sy . x = 2.28; n = 48).