Dielectric slab Rotman lens for microwave/millimeter-wave applications

Abstract
A new form of a Rotman lens is proposed for microwave/millimeter-wave applications such as a collision-avoidance radar. The proposed lens can be described as a dielectric slab fed by slot lines. The new form is expected to show lower loss and lower mutual coupling than the conventional Rotman lenses fabricated with conducting plates at millimeter-wave frequency. Taking the field distribution inside the dielectric slab into account, the TE/sub 0/ mode was chosen to excite the dielectric slab lens. The dielectric Rotman lens consists of a dielectric slab, tapered slot structure, and the transitions between the antipodal slots and microstrip lines for subminiature A connectors. The conventional design equations have been modified for use in designing the dielectric slab Rotman lens with a high dielectric material. A prototype was implemented with nine beam ports and nine array ports. Measurements from 10 to 20 GHz show that mutual coupling can be lowered at higher frequency. The obtained efficiency of the dielectric slab lens system is approximately 30%. The efficiency of the lens is comparable to that of the conducting plate lenses even though there is a spillover loss from the dielectric slab.

This publication has 13 references indexed in Scilit: