THE ROLE OF VITRIFICATION IN ANHYDROBIOSIS

Abstract
▪ Abstract Numerous organisms are capable of surviving more or less complete dehydration. A common feature in their biochemistry is that they accumulate large amounts of disaccharides, the most common of which are sucrose and trehalose. Over the past 20 years, we have provided evidence that these sugars stabilize membranes and proteins in the dry state, most likely by hydrogen bonding to polar residues in the dry macromolecular assemblages. This direct interaction results in maintenance of dry proteins and membranes in a physical state similar to that seen in the presence of excess water. An alternative viewpoint has been proposed, based on the fact that both sucrose and trehalose form glasses in the dry state. It has been suggested that glass formation (vitrification) is in itself sufficient to stabilize dry biomaterials. In this review we present evidence that, although vitrification is indeed required, it is not in itself sufficient. Instead, both direct interaction and vitrification are required. Spec...