Impaired Endothelium-Derived Hyperpolarizing Factor-Mediated Dilations and Increased Blood Pressure in Mice Deficient of the Intermediate-Conductance Ca 2+ -Activated K + Channel

Abstract
The endothelium plays a key role in the control of vascular tone and alteration in endothelial cell function contributes to several cardiovascular disease states. Endothelium-dependent dilation is mediated by NO, prostacyclin, and an endothelium-derived hyperpolarizing factor (EDHF). EDHF signaling is thought to be initiated by activation of endothelial Ca2+-activated K+ channels (KCa), leading to hyperpolarization of the endothelium and subsequently to hyperpolarization and relaxation of vascular smooth muscle. In the present study, we tested the functional role of the endothelial intermediate-conductance KCa (IKCa/KCa3.1) in endothelial hyperpolarization, in EDHF-mediated dilation, and in the control of arterial pressure by targeted deletion of KCa3.1. KCa3.1-deficient mice (KCa3.1−/−) were generated by conventional gene-targeting strategies. Endothelial KCa currents and EDHF-mediated dilations were characterized by patch-clamp analysis, myography and intravital microscopy. Disruption of the KCa3.1 gene...