The human Bloom syndrome gene suppresses the DNA replication and repair defects of yeastdna2mutants
Open Access
- 25 June 2003
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 100 (14), 8193-8198
- https://doi.org/10.1073/pnas.1431624100
Abstract
Bloom syndrome is a disorder of profound and early cancer predisposition in which cells become hypermutable, exhibit high frequency of sister chromatid exchanges, and show increased micronuclei. BLM, the gene mutated in Bloom syndrome, has been cloned previously, and the BLM protein is a member of the RecQ family of DNA helicases. Many lines of evidence suggest that BLM is involved either directly in DNA replication or in surveillance during DNA replication, but its specific roles remain unknown. Here we show that hBLM can suppress both the temperature-sensitive growth defect and the DNA damage sensitivity of the yeast DNA replication mutant dna2-1. The dna2-1 mutant is defective in a helicase-nuclease that is required either to coordinate with the crucial Saccharomyces cerevisiae (sc) FEN1 nuclease in Okazaki fragment maturation or to compensate for scFEN1 when its activity is impaired. We show that human BLM interacts with both scDna2 and scFEN1 by using coimmunoprecipitation from yeast extracts, suggesting that human BLM participates in the same steps of DNA replication or repair as scFEN1 and scDna2.Keywords
This publication has 53 references indexed in Scilit:
- Okazaki Fragment Maturation in YeastJournal of Biological Chemistry, 2003
- Biochemical Characterization of the WRN−FEN-1 Functional InteractionBiochemistry, 2002
- Coupling of DNA Helicase and Endonuclease Activities of Yeast Dna2 Facilitates Okazaki Fragment ProcessingJournal of Biological Chemistry, 2002
- Role of the Bloom's syndrome helicase in maintenance of genome stabilityBiochemical Society Transactions, 2001
- Role of the Bloom’s syndrome helicase in maintenance of genome stabilityBiochemical Society Transactions, 2001
- The Bloom's Syndrome Gene Product Interacts with Topoisomerase IIIJournal of Biological Chemistry, 2000
- The Bloom's Syndrome Helicase Unwinds G4 DNAJournal of Biological Chemistry, 1998
- Semi-conservative replication in yeast nuclear extracts requires Dna2 helicase and supercoiled templateJournal of Molecular Biology, 1998
- Cloning of a Mouse Homologue of the Human Werner Syndrome Gene and Assignment to 8A4 by Fluorescencein SituHybridizationGenomics, 1997
- Assignment of the Closest Human Homologue (DNA2L; KIAA0083) of the Yeast Dna2 Helicase Gene to Chromosome Band 10q21.3–q22.1Genomics, 1996