Abstract
The acoustic intermodulation distortion product 2f1-f2 (ADP) was measured in human subjects to investigate (1) the dependence of ADP level on stimulus parameters and (2) the relationship between ADP level and auditory sensitivity. The frequency ratio (f2/f1), at which ADP level is maximal, varies only slightly across frequency and subjects. The average optimal ratio is 1.225. Beyond the maximum, the ADP level declines with increasing f2/f1 ratio, at rates of up to 250 dB/oct. As the level of one stimulus is increased relative to the other, the ADP grows, saturates, and in most cases shows a bendover. Maximum distortion is generated when L 1 exceeds L 2. Growth rate and saturation point are dependent on which stimulus is incremented and on the level of the stationary stimulus. With optimal stimulus parameters (levels below 60 dB SPL; L1 > L 2 by 15 dB; f2/f1 = 1.225), ADP levels are commonly 30 dB below L 2. Patterns of ADP level across frequency vary between subjects, but are repeatable within each subject. As the frequency of one or both of the stimuli is varied, changes in ADP level exhibit a broadly featured pattern with a fine structure superimposed upon it. This fine structure was compared with the features in the stimulus frequency emission spectrum in one subject. With appropriate stimulus parameters, half of our subjects show a statistically significant correlation across frequency, between ADP level and auditory sensitivity at the corresponding f1 frequency. Our results suggest that, with low levels of stimulation, ADP measurements could form the basis of an objective measure of cochlear function in human subjects.