Abstract
A method is described that permits simultaneous determination of the net charge transfer associated with Ca2+ transport by the ruthenium-red-sensitive carrier and the ionized internal [Ca2+] in heart mitochondria. The data indicate that this carrier catalyses a charge-uncompensated flux of Ca2+. Full charge compensation for Ca2+ influx is provided by the respiration-dependent efflux of H+. The net efflux of Ca2+ induced by Na+ is analysed in terms of two other carriers, a Na+-Ca2+ antiporter and a Na+-H+ antiporter. Evidence is presented that these two carriers are separate and that the Na+-H+ exchange is the more rapid. The fluxes of Ca2+, Na+ and H+ during the Na+-induced efflux of Ca2+ support a series of events in which the Na+-H+ exchange enables unidirectional Ca2+ fluxes via the uniport and antiport systems to be integrated into a cycle.