A thermodynamic model to predictPhanerochaete chrysosporium INA-12 adhesion to various solid carriers in relation to lignin peroxidase production

Abstract
A thermodynamic model was used in this study to predict the adhesion of Phanerochaete chrysosporium INA-12 as conidiospores or mycelium to various solid carriers. Theoretical predictions were closely reflected by experimental results. Amount of immobilized mycelium was higher for hydrophobic (polypropylene and polyurethane) than for hydrophilic carrier (stainless steel and grey). Lignin peroxidase production was stimulated in the same way. However, better results were obtained with polyurethane than with polypropylene and with grey than with stainless steel. These results were attributed to roughness effects of solid surfaces. Surface morphology characterization showed that the surface roughness parameter RA was higher for polyurethane and grey as compared to polypropylene and stainless steel, respectively. On the other hand, polyurethane is not simply rugous; it has an intraparticle porosity as well as a higher total surface area as compared to polypropylene.