Noninvasive Assessment of Coronary Artery Disease by Multislice Spiral Computed Tomography Using a New Retrospectively ECG-Gated Image Reconstruction Techniqu-Comparison With Angiographic Results-

Abstract
The present study was designed to investigate the accuracy of multislice spiral computed tomography (MSCT) in detecting coronary artery disease, compared with coronary angiography (CAG), using a new retrospectively ECG-gated reconstruction method that reduced cardiac motion artifact. The study group comprised 54 consecutive patients undergoing MSCT and CAG. MSCT was performed using a SOMATOM Volume Zoom (4-detector-row, Siemens, Germany) with slice thickness 1.0 mm, pitch 1.5 (table feed: 1.5 mm per rotation) and gantry rotation time 500 ms. Metoprolol (20-60 mg) was administered orally prior to MSCT imaging. ECG-gated image reconstruction was performed with the reconstruction window (250 ms) positioned immediately before atrial contraction in order to reduce the cardiac motion artifact caused by the abrupt diastolic ventricular movement occurring during the rapid filling and atrial contraction periods. Following inspection of the volume rendering images, multiplanar reconstruction images and axial images of the left main coronary artery (LMCA), left anterior descending artery (LAD), left circumflex artery (LCx) and right coronary artery (RCA) were obtained and evaluated for luminal narrowing. The results were compared with those obtained by CAG. Of 216 coronary arteries, 206 (95.4%) were assessable; 10 arteries were excluded from the analysis because of severe calcification (n=4), stents (n=3) or insufficient contrast enhancement (n=3). The sensitivity to detect coronary stenoses ≥50% was 93.5% and the specificity to define luminal narrowing Circ J 2003; 67: 401 - 405)

This publication has 13 references indexed in Scilit: