A working memory model based on fast Hebbian learning

Abstract
Recent models of the oculomotor delayed response task have been based on the assumption that working memory is stored as a persistent activity state (a ‘bump’ state). The delay activity is maintained by a finely tuned synaptic weight matrix producing a line attractor. Here we present an alternative hypothesis, that fast Hebbian synaptic plasticity is the mechanism underlying working memory. A computational model demonstrates a working memory function that is more resistant to distractors and network inhomogeneity compared to previous models, and that is also capable of storing multiple memories.