Quantum Tunneling of Magnetization and Related Phenomena in Molecular Materials

Abstract
Molecules comprising a large number of coupled paramagnetic centers are attracting much interest because they may show properties which are intermediate between those of simple paramagnets and classical bulk magnets and provide unambiguous evidence of quantum size effects in magnets. To date, two cluster families, usually referred to as Mn12 and Fe8, have been used to test theories. However, it is reasonable to predict that other classes of molecules will be discovered which have similar or superior properties. To do this it is necessary that synthetic chemists have a good understanding of the correlation between the structure and properties of the molecules, for this it is necessary that concepts such as quantum tunneling, quantum coherence, quantum oscillations are understood. The goal of this article is to review the fundamental concepts needed to understand quantum size effects in molecular magnets and to critically report what has been done in the field to date.