Abstract
An enzyme activity capable of degrading the glycosyl-phosphatidylinositol membrane anchor of cell-surface proteins has previously been reported in a number of mammalian tissues. The experiments reported here demonstrate that this anchor-degrading activity is also abundant in mammalian plasma. The activity was inhibited by EGTA or 1,10-phenanthroline. It was capable of removing the anchor from alkaline phosphatase, 5''-nucleotidase, and variant surface glycoprotein but had little or no activity toward phosphatidylinositol or phosphatidylcholine. Phosphatidic acid was the only 3H-labeled product when this enzyme hydrolyzed [3H]myristate-labeled variant surface glycoprotein. It could be distinguished from the Ca2+-dependent inositol phospholipid-specific phospholipase C activity in several rat tissues on the basis of its molecular size and its sensitivity to 1,10-phenanthroline. The data therefore suggest that this activity is due to a phospholipase D with specificity for glycosylphosphatidylinositol structures. Although the precise physiological function of this anchor-specific phospholipase D remains to be determined, these findings indicate that it could play an important role in regulating the expression and release of cell-surface proteins in vivo.

This publication has 19 references indexed in Scilit: