Complexation of M3+Lanthanide Cations by Calix[4]arene-CMPO Ligands: A Molecular Dynamics Study in Methanol Solution and at a Water/Chloroform Interface

Abstract
We report a molecular dynamics study on the 1:1 M3+ lanthanide (La3+, Eu3+ and Yb3+) inclusion complexes of an important extractant molecule L: a calix[4]arene-tetraalkyl ether substituted at the wide rim by four NH-C(O)-CH2-P(O)Ph2 arms. The M(NO3)3 and MCl3 complexes of L are compared in methanol solution and at a water / chloroform interface. In the different environments the coordination sphere of M3+ involves the four phosphoryl oxygens and three to four loosely bound carbonyl oxygens of the CMPO-like arms. Based on free energy simulations, we address the question of ion binding selectivity in pure liquid phases and at the liquid-liquid interface where L and the complexes are found to adsorb. According to the simulations, the enhancement of M3+ cation extraction in the presence of the calixarene platform, examined by comparing L to the (CMPO)4 “ligand” at the interface, is related to the fact that (i) the (CMPO)4Eu(NO3)3 complex is more hydrophilic than the LEu(NO3) one and (ii) the free CMPO ligands spread at the interface, and are therefore less organized for cation capture than L.

This publication has 55 references indexed in Scilit: