Thermogenesis in human skeletal muscle as measured by direct microcalorimetry and muscle contractile performance during β-adrenoceptor blockade

Abstract
1. The influence of .beta.-adrenoceptor-blockade on skeletal muscle was studied in ten healthy males with propranolol, atenolol and pindolol randomly given for 8 days each in a cross-over double blind test. After 7 days on each drug, muscle function was tested by an isokinetic dynamometer. Theromogenesis in biopsy samples taken from vastus lateralis muscle after a low grade exercise was studied after 8 days on each drug by direct calorimetry with a perfusion microcalorimeter. 2. Before drug administration, a median heat production rate of 0.67 mW/g of muscle was measured. This value was significantly reduced by 25% during propranolol, but no significant change was found during atenolol or pindolol administration. 3. Peak torque decline during isokinetic endurance test changed significantly in knee flexor but not in extensor muscles, from 15% to 27% after propranolol and from 15% to 23% after pindolol. Maximum dynamic strength was unaltered. 4. Our data suggest that blockade of sympathetic .beta.2-receptors decreases thermogenesis in human skeletal muscle and impairs isokinetic endurance.