Abstract
Whittaker and Ruse have developed forms of Gauss's theorem in general relativity, their theorems connecting integrals of normal force taken over a closed 2-space V2 with integrals involving the distribution of matter taken over an open 3-space bounded by V2. The definition of force employed by them involves the introduction of a normal congruence (with unit tangent vector λi), the “force” relative to the congruence being the negative of the first curvature vector of the congruence (– δλi/δs). This appears at first sight a natural enough definition, because – δλi/δs at an event P represents the acceleration relative to the congruence of a free particle travelling along a geodesic tangent to the congruence at P. In order to give physical meaning to this definition of force it is necessary to specify the congruence λi physically, and it would seem most natural to choose the congruence of world-lines of flow of the medium. Supposing certain conditions satisfied by this congruence (cf. Ruse, loc. cit.), the theory of Ruse is applicable, and from this follows a form of Gauss's theorem.

This publication has 5 references indexed in Scilit: