Electrooptic properties of polymer dispersed liquid crystals

Abstract
An investigation of the electrooptic properties of polymer dispersed liquid crystals (PDLC) is presented. These materials are light modulating systems. They show a reversible optical response from an opaque state to a highly transmitting state under the action of an appropriate electric field which aligns the liquid crystal director. The switching voltage required to establish such an electric field has been monitored as a function of (i) the starting materials used for the preparation of the PDLCs, (ii) the ageing (curing time) of the PDLC cells. Other physical properties, such as the electrical resistivity and the dielectric constant of the materials, have been measured. The correlations between these properties have been studied. The PDLC switching voltage appears to be strongly correlated with the resistivity. Our data suggest that ionic impurities play a dominant role with respect to the electrooptic response of PDLC films.

This publication has 8 references indexed in Scilit: