Optical Measurements of Tropospheric Hydroxyl with Lasers

Abstract
The application of laser induced fluorescence (LIF) in the uv to monitor tropospheric OH concentrations is limited for several reasons. In general the sensitivity of this method increases with the laser intensity. But at the low OH concentrations present in the atmosphere the beginning nonlinearity of the absorption (saturation effect) severely restricts the use of higher laser intensities. The high sensitivity of the LIF technique can be further compromised by the presence of an OH interference signal. This signal is generated by the monitoring laser light itself from laser photolysis of ambient ozone and the succeeding reaction of the photolysis product O (1D) with water to produce hydroxyl radicals. The results of the calculations are presented in a diagram from which the range of laser parameters can be deduced, which can be applied with confidence to monitor OH by the LIF method. The maximum number of signal counts for these working conditions is in the range of 10-3 per laser pulse.