Abstract
Fertilizer nitrogen was applied to pot-grown trees during the year of initial scion growth either as “spring N”, “summer N” or “autumn N”, while other trees were left untreated—“minus N”. Tree performance was followed until fruit set the following summer. At regular intervals whole trees were sampled, divided into as many as seven different parts, which were separately weighed, dried and analysed for total nitrogen. Specimens were also taken for histological examination of flower bud development. The large amount of fertilizer given as “spring N” resulted in extensive root damage from which the trees did not recover fully; nevertheless they produced large, vigorous scions. After “spring N” and “summer N” at lower dosages the total N content of all parts increased substantially and rapidly. “Autumn N” was absorbed more slowly and remained largely in the roots during the winter, when a considerable amount of root growth took place. Flowers were initiated in late July or early August on all trees except those given “spring N”, on which flower primordia were not initiated until September. The development of flower buds was accelerated during September on “summer N” trees compared with those left untreated. From the end of November until the end of March no further differentiation took place on “minus N” or “spring N” trees, but it continued on the other treatments, especially following “autumn N”. “Summer N” and “autumn N” trees were 4–5 days in advance of the others in flowering. “Summer N” trees had large flowers and large green primary leaves, whereas those on “autumn N” trees were smaller and the leaves were initially pale, though turning dark green during blossoming. When the blossoms were self-pollinated under controlled conditions virtually no fruit was set on “minus N” and “spring N” trees, but “summer N” gave an appreciable set and “autumn N” a heavy set. Only the “summer N” and ”autumn N” flowers had ovules that remained viable six days after anthesis, which was the minimum period found necessary for the pollen tubes to effect fertilization. It is suggested that fertilizer nitrogen stimulates the synthesis of a kinin-like factor in the roots and that the difference in response to applications at different times of year depends upon the stage of development of the flower buds when this factor reaches them.