Abstract
An isotropic elastic material containing a random distribution of identical spherical particles of another elastic material is considered. The bonding between the spheres and the matrix is imperfect, so that slip may occur at interfaces when stress is applied to the medium. The shear stresses at the interface is assumed to be proportional to the amount of slip. The velocity and attenuation of the average harmonic elastic waves propagating through such a medium are calculated. The results are valid to the lowest order in frequency for wave lengths long compared with the radius of the sphere. The dynamic elastic moduli are obtained from these results and are compared with available results for welded contact. The variations in the P and S wave velocities for propagation across earthquake faults is discussed.

This publication has 10 references indexed in Scilit: