Optimization of mouse embryo culture media using simplex methods

Abstract
Culture media were developed for pronuclear-stage mouse embryos using simplex optimization, which has the benefit of being able to optimize several components simultaneously. Initially, several different media were generated. All media contained the same components, yet each medium was characterized by having a different component at a high concentration. The simplex procedure identified 4 components (NaCl, pyruvate, KH2PO4 and glucose) which at high concentrations were detrimental to embryo development, compared to the other components tested. For example, all embryos cultured in a medium with high NaCl blocked at the 2-cell stage. The optimization method then adjusted each medium by lowering the concentration of the component or removing it entirely, which resulted in a significant increase in development. In an experiment comparing 8 media generated from the simplex optimization, along with 7 other media, removal of KH2PO4 resulted in the largest increase in development; 88% of embryos were greater than or equal to 4 cells on Day 3 after hCG, and 53% developed into blastocysts by Day 5. Another experiment compared 4 of the best media generated from the simplex optimization. In 3 out of the 4 media, 90% or more of the embryos were greater than or equal to 4 cells on Day 3. In 3 of the media, approximately 60% or more of the embryos developed into blastocysts. The simplex optimization procedure is an efficient method for developing culture media and determining requirements for development in vitro.