Fracture mechanisms of quasi-brittle materials based on acoustic emission

Abstract
Recently acoustic emission (AE) techniques have been used to study crack propagation in materials. The application of these techniques to heterogeneous, quasi-brittle materials such as concrete requires a better understanding of how the signal generated from a microfracture is transformed due to wave propagation and due to the transducer response. In this study, piezoelectric transducers were calibrated using displacement transducers. The validity of an elastodynamic Green's function approach was examined for cement-based materials. The acoustic emission source was characterized using moment tensor analysis. Acoustic emission measurements were analyzed for center-cracked-plate specimens of mortar and concrete. It was observed that, as expected, the dominant mode of cracking was mode I (tensile). However, mode II (shear) and mixed mode cracks also occurred, perhaps due to grain boundary sliding and interface debonding. Microfractures appear to localize prior to critical crack propagation. Mode I cracks generally required more energy release than mode II and a smaller inclusion provided a stronger interface bond than the larger ones.

This publication has 12 references indexed in Scilit: