Effects of anisotropy on the development of cardiac arrhythmias associated with focal activity

Abstract
The anisotropy that normally exists in the myocardium may be either enhanced in peri-infarction zones by loss of lateral cell connections or reduced by redistribution of gap junctions. To test how the degree of anisotropy affects the development of ectopic focal activity, we carried out computer simulations in which a model of an ectopic focus is incorporated as the central element of a two-dimensional sheet of ventricular cells. At low values of intercellular coupling conductance (G c), the focus region is spontaneously active, but the limited intercellular current flow inhibits propagation. At high G c, automaticity is suppressed by the loading effects of the surrounding cells. At intermediate G c, the ectopic activity may propagate into the sheet. In the case of isotropic coupling, the minimum size of the focus region for propagation to occur (in terms of number of collaborating cells within the focus) is as small as approximately ten cells, and this number decreases with increasing anisotropy. Thus, the presence of anisotropy facilitates the development of ectopic focal activity. We conclude that the remodeling that occurs in peri-infarction zones may create a substrate that either facilitates (enhanced anisotropy) or inhibits (reduced anisotropy) the development of cardiac arrhythmias associated with ectopic focal activity.