Two-dimensional echocardiographic assessment of left ventricular volumes and ejection fraction in children.

Abstract
The ability of two-dimensional echocardiography to measure left ventricular volumes and ejection fraction was evaluated in 25 children with congenital heart disease. Dimensions and planimetered areas were obtained in the short-axis view at the mitral valve and high and low papillary muscle levels and in the apical two- and four-chamber views. Eight algorithms using five geometric models were assessed. Left ventricular end-diastolic volume, end-systolic volume and ejection fraction were compared with data from biplane cineangiocardiograms. The correlation varied with the algorithm used. Algorithms using short-axis views appeared superior to those using only apical long-axis views. Four algorithms estimated left ventricular volumes with equal accuracy (Simpson's rule, assuming the ventricle to be a truncated cone; Simpson's rule, assuming the ventricle to be a truncated ellipse; hemisphere cylinder; and ellipsoid biplane). The single algorithm that best estimated left ventricular ejection fraction was the ellipsoid biplane formula using the short-axis view at the papillary muscle level (r = 0.91, slope = 0.94, SEE = 6.7%). Thus, two-dimensional echocardiography can accurately assess left ventricular volumes and ejection fraction in children with congenital heart disease.