Reduced operating voltage of organic electroluminescent devices by plasma treatment of the indium tin oxide anode

Abstract
The impact of oxygen plasma treatment of indium tin oxide anodes on performance and durability of vapor-deposited organic electroluminescent devices is shown. Investigations focused on the long-term stability using driving conditions suitable for passive matrix driven displays. Reliability studies of solvent only cleaned samples indicate the presence of a predominating degradation process at the interface between indium tin oxide and the hole injection layer which results in a drastic rise of the operating voltage. This voltage increase could be reduced to 0.31 mV/h by oxygen plasma treatment. As hole injection layer copper phthalocyanine is compared with a star-shaped amine derivative.