In Vitro and In Vivo Neurotoxicity of Prion Protein Oligomers

Abstract
The mechanisms underlying prion-linked neurodegeneration remain to be elucidated, despite several recent advances in this field. Herein, we show that soluble, low molecular weight oligomers of the full-length prion protein (PrP), which possess characteristics of PrP to PrPsc conversion intermediates such as partial protease resistance, are neurotoxic in vitro on primary cultures of neurons and in vivo after subcortical stereotaxic injection. Monomeric PrP was not toxic. Insoluble, fibrillar forms of PrP exhibited no toxicity in vitro and were less toxic than their oligomeric counterparts in vivo. The toxicity was independent of PrP expression in the neurons both in vitro and in vivo for the PrP oligomers and in vivo for the PrP fibrils. Rescue experiments with antibodies showed that the exposure of the hydrophobic stretch of PrP at the oligomeric surface was necessary for toxicity. This study identifies toxic PrP species in vivo. It shows that PrP-induced neurodegeneration shares common mechanisms with other brain amyloidoses like Alzheimer disease and opens new avenues for neuroprotective intervention strategies of prion diseases targeting PrP oligomers. Prion diseases are transmissible neurodegenerative diseases caused by an infectious agent thought to be composed mainly of a host protein, the prion protein (PrP). The mechanisms of neurodegeneration prevailing in these diseases are not well understood. In the present study, we demonstrate that small PrP aggregates, called oligomers, cause the death of neurons in culture and after injection in vivo. On the contrary, larger PrP aggregates, visualized as fibrils by electron microscopy, do not cause the death of cultured neurons and are much less toxic than PrP oligomers in vivo. We propose that the PrP oligomers exert their toxicity by disturbing neuronal membranes, as well as by an excessive intracellular concentration leading to the generation of death signals (also called apoptotic signals) by the cell. Moreover, the use of antibodies recognizing a certain portion of the PrP oligomers could prevent neuronal death. This study assigns prion diseases to the same group of diseases as Alzheimer disease, in which protein oligomers constitute the major trigger of the neurodegenerative process, and suggests new possible neuroprotective approaches for therapeutic strategies.