Estimation of fuzzy Gaussian mixture and unsupervised statistical image segmentation
- 1 March 1997
- journal article
- Published by Institute of Electrical and Electronics Engineers (IEEE) in IEEE Transactions on Image Processing
- Vol. 6 (3), 425-440
- https://doi.org/10.1109/83.557353
Abstract
This paper addresses the estimation of fuzzy Gaussian distribution mixture with applications to unsupervised statistical fuzzy image segmentation. In a general way, the fuzzy approach enriches the current statistical models by adding a fuzzy class, which has several interpretations in signal processing. One such interpretation in image segmentation is the simultaneous appearance of several thematic classes on the same site. We introduce a new procedure for estimating of fuzzy mixtures, which is an adaptation of the iterative conditional estimation (ICE) algorithm to the fuzzy framework, We first describe the blind estimation, i.e., without taking into account any spatial information, valid in any context of independent noisy observations. Then we introduce, in a manner analogous to classical hard segmentation, the spatial information by two different approaches: contextual segmentation and adaptive blind segmentation. In the first case, the spatial information is taken into account at the segmentation step level, and in the second case it is taken into account at the parameter estimation step level. The results obtained with the iterative conditional estimation algorithm are compared to those obtained with expectation-maximization (EM) and the stochastic EM algorithms, on both parameter estimation and unsupervised segmentation levels, via simulations. The methods proposed appear as complementary to the fuzzy C-means algorithms.Keywords
This publication has 21 references indexed in Scilit:
- A possibilistic approach to clusteringIEEE Transactions on Fuzzy Systems, 1993
- Fuzzy classification of remote sensing imagesIEEE Transactions on Geoscience and Remote Sensing, 1990
- Parametric Inference for imperfectly observed Gibbsian fieldsProbability Theory and Related Fields, 1989
- Random field models in image analysisJournal of Applied Statistics, 1989
- Spatial classification using fuzzy membership modelsIEEE Transactions on Pattern Analysis and Machine Intelligence, 1988
- Adaptive segmentation of speckled images using a hierarchical random field modelIEEE Transactions on Acoustics, Speech, and Signal Processing, 1988
- Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random FieldsIEEE Transactions on Pattern Analysis and Machine Intelligence, 1987
- Iterative fuzzy image segmentationPattern Recognition, 1985
- Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of ImagesIEEE Transactions on Pattern Analysis and Machine Intelligence, 1984
- A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated ClustersJournal of Cybernetics, 1973