Early cellular abnormalities induced by RET/PTC1 oncogene in thyroid-targeted transgenic mice

Abstract
The RET/PTC1 oncogene, a rearranged form of the RET proto-oncogene, has been reported to be associated with human papillary thyroid carcinomas. We have shown that targeted expression of RET/PTC1 in the thyroid gland leads to the development of thyroid carcinomas in transgenic mice with histologic and cytologic similarities to human papillary thyroid carcinoma. To further investigate how RET/PTC1 expression contributes to the pathogenesis of papillary thyroid tumor, the time of tumor onset and the early phenotypic consequences of RET/PTC1 expression in thyrocytes were determined. All high copy transgenic mice developed bilateral thyroid tumors as early as 4 days of age. At embryological days 16 – 18, increased proliferation rate, distorted thyroid follicle formation and reduced radioiodide concentrating activity were identified in transgenic embryos. The reduced radioiodide concentrating activity was attributed to decreased expression of the sodium-iodide symporter. Our study showed that RET/PTC1 not only increased proliferation of thyrocytes, it also altered morphogenesis and differentiation. These findings provide a model for the role of RET/PTC1 in the formation of abnormal follicles with reduced iodide uptake ability observed in human papillary thyroid carcinoma.