Abstract
We have begun a series of studies designed to characterize gene expression during differentiation in the slime mold Physarum polycephalum. This work concerns the starvation phase of the sporulation sequence and describes some of the quantitative changes which occur in plasmodial constituents during the 3-day starvation period and also describes alterations in the transfer ribonucleic acid (tRNA) population. The results show that whereas the plasmodial tRNA content decreased by 75% during starvation, concurrent de novo synthesis of tRNA also occurred, and they also show that overall amino acid acceptor activity of the starvation-phase tRNA population did not differ significantly from that found in the growth phase. Of the 19 starvation-phase tRNA families assayed, however, 6 were found to have consistently lower acceptor activities than did their growth-phase counterparts. Reverse-phase (RPC-5) chromatographic analysis of five of those families failed to reveal any major differences between growth- and starvation-phase isoacceptors. The data suggest that the depletion and resynthesis of tRNA during the starvation phase results in a quantitative alteration in the composition of the tRNA population and that the alteration is tRNA family and not tRNA isoacceptor specific.