6-Deoxyerythronolide B Synthase 1 Is Specifically Acylated by a Diketide Intermediate at the β-Ketoacyl-Acyl Carrier Protein Synthase Domain of Module 2
- 1 January 1996
- journal article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 35 (48), 15244-15248
- https://doi.org/10.1021/bi961972f
Abstract
We have used 6-deoxyerythronolide B synthase (DEBS) as a model system to investigate molecular recognition by a modular polyketide synthase (PKS). DEBS consists of three proteins (DEBS1, -2, and -3) that biosynthesize the polyketide skeleton of the antibiotic erythromycin from propionyl-CoA and methylmalonyl-CoA. Active sites within these multifunctional proteins are organized into biosynthetic “modules”, each of which catalyzes a discrete round of polyketide chain elongation and adjusts the appropriate level of β-ketoacylthioester reduction. Using DEBS1, we demonstrate that there is a substantial degree of molecular recognition in the processing of the natural diketide chain elongation intermediate. Exogenously added (2S,3R)-2-methyl-3-hydroxypentanoic acid N-acetylcysteamine thioester is exclusively recognized by its cognate β-ketoacyl-acyl carrier protein synthase domain in module 2 (KS2). Labeled diketide specifically acylated DEBS1 in crude protein extracts and limited proteolysis localized the binding to module 2. The precise site of acylation in DEBS1 was established by the finding that a Cys2200Ala mutant of DEBS1, lacking the KS2 active-site cysteine, did not undergo acylation by the diketide. Pretreatment of the wild-type protein with the β-ketoacyl-ACP synthase inhibitor cerulenin also blocked acylation. These results indicate that in addition to the purely organizational consequences resulting from the order of active-site domains, the programming of polyketide biosynthesis by modular PKSs involves a substantial level of molecular recognition. This conclusion has important implications for the use of PKSs to rationally design novel polyketides.Keywords
This publication has 3 references indexed in Scilit:
- Divergent sequence motifs correlated with the substrate specificity of (methyl)malonyl‐CoA:acyl carrier protein transacylase domains in modular polyketide synthasesFEBS Letters, 1995
- Identification of DEBS 1, DEBS 2 and DEBS 3, the multienzyme polypeptides of the erythromycin‐producing polyketide synthase from Saccharopolyspora erythraeaFEBS Letters, 1992
- MOLECULAR GENETICS OF POLYKETIDES AND ITS COMPARISON TO FATTY ACID BIOSYNTHESISAnnual Review of Genetics, 1990