Abstract
Dark-field microscopy of living myelinated nerve fibers from the spinal roots of Xenopus laevis revealed many spherical organelles moving in the axoplasm of fibers from the ventral roots and in fibers just distal to the dorsal root ganglion. Similar organelles were present but few were seen to move along fibers from the dorsal roots central to the ganglion. This observation prompted an ultrastructural study of microtubule and neurofilament densities in the myelinated fibers of the spinal roots. The density of microtubules was significantly less in fibers from the central part of the dorsal roots than in the rest of the spinal root system. Neurofilament densities were equivalent in all parts of the roots. Microtubules showed a significant association with mitochondria in the ventral roots and in the dorsal roots distal to the ganglion, but no significant association was obtained for the dorsal roots central to the ganglion. The meaning of these results in the axoplasmic transport of large organelles is discussed.