Spectral integration plasticity in cat auditory cortex induced by perceptual training

Abstract
We investigated the ability of cats to discriminate differences between vowel-like spectra, assessed their discrimination ability over time, and compared spectral receptive fields in primary auditory cortex (AI) of trained and untrained cats. Animals were trained to discriminate changes in the spectral envelope of a broad-band harmonic complex in a 2-alternative forced choice procedure. The standard stimulus was an acoustic grating consisting of a harmonic complex with a sinusoidally modulated spectral envelope (“ripple spectrum”). The spacing of spectral peaks was conserved at 1, 2, or 2.66 peaks/octave. Animals were trained to detect differences in the frequency location of energy peaks, corresponding to changes in the spectral envelope phase. Average discrimination thresholds improved continuously during the course of the testing from phase-shifts of 96° at the beginning to 44° after 4–6 months of training with a 1 ripple/octave spectral envelope. Responses of AI single units and small groups of neurons to pure tones and ripple spectra were modified during perceptual discrimination training with vowel-like ripple stimuli. The transfer function for spectral envelope frequencies narrowed and the tuning for pure tones sharpened significantly in discriminant versus naïve animals. By contrast, control animals that used the ripple spectra only in a lateralization task showed broader ripple transfer functions and narrower pure-tone tuning than naïve animals.

This publication has 76 references indexed in Scilit: