Myogenic stem cell commitment probability remains constant as a function of organismal and mitotic age

Abstract
Chicken myogenic stem cells can undergo symmetric and asymmetric cell divisions. Symmetric divisions produce two stem cells or two cells committed to terminal muscle differentiation. Asymmetric divisions produce one stem cell and one committed cell. Committed cells undergo four divisions, and their progeny differentiate into postmitotic, biochemically distinct muscle cells, which can be identified immunocytochemically. The control of stem cell commitment was investigated in vitro by means of cell cloning and subcloning experiments, and computer modeling. We found that stem cell commitment is a process which can be modeled as a stochastic event, with a central tendency or probability of 0.2 ± 0.1. This value is independent of organismal or mitotic age of the stem cells, cell density, or growth in a mitogen‐poor environment. Myogenic stem cells stop dividing after approximately 30 divisions in vitro. Since the probability of commitment to terminal differentiation remains below 0.5, clonal senescence and terminal differentiation are separate processes in this system.