Differences in the electrophysiological response of canine ventricular epicardium and endocardium to ischemia. Role of the transient outward current.
- 1 December 1993
- journal article
- research article
- Published by Wolters Kluwer Health in Circulation
- Vol. 88 (6), 2903-2915
- https://doi.org/10.1161/01.cir.88.6.2903
Abstract
BACKGROUND Acute ischemia is known to produce more severe electrophysiological disturbances in canine ventricular epicardium than endocardium, although the mechanism for the differential sensitivity is still unresolved. Recent studies have demonstrated the presence of a prominent transient outward current (Ito) in ventricular epicardium but not endocardium. The present study was designed to test the hypothesis that the differential sensitivity of these two tissues to ischemia results, at least in part, from a more prominent Ito in epicardium than in endocardium. METHODS AND RESULTS Isolated canine ventricular epicardial and endocardial tissues and myocytes were studied by standard microelectrode techniques. Simulated ischemia (hyperkalemia, hypoxia, and acidosis) abolished the action potential plateau and caused a 50% to 60% shortening of action potential duration in epicardium but only a 10% to 20% shortening in endocardium. 4-Aminopyridine, an Ito inhibitor, restored the plateau in epicardium and reduced the dispersion of action potential duration between epicardium and endocardium. Stimulation protocols that minimized the contribution of Ito, such as acceleration of the stimulation rate or introduction of early premature beats, produced a paradoxical prolongation of the epicardial response caused by restoration of the action potential dome. Thus, ischemia-induced dispersion of repolarization was greatly diminished at rapid rates and after premature beats. Similar results were obtained in tissues and myocytes obtained from the same myocardial layers, suggesting that the differential sensitivities of epicardium and endocardium to ischemia are largely a result of inherent differences in cellular properties. CONCLUSIONS Our data suggest that the presence of a prominent Ito in epicardium but not endocardium contributes importantly to the selective electrical depression of epicardium by simulated ischemia. The repolarizing influence of Ito serves to amplify the ischemia-induced changes in inward (ICa and INa) and outward (calcium-activated) currents. By facilitating loss of the dome in epicardium, Ito contributes to the development of a marked dispersion of repolarization between normal and ischemic epicardium and between epicardium and endocardium, thereby providing the electrophysiological substrate for the genesis of reentrant arrhythmias.Keywords
This publication has 21 references indexed in Scilit:
- Dynamic Tracking of Cardiac Vulnerability by Complex Demodulation of the T WaveScience, 1991
- Simultaneous endocardial and epicardial monophasic action potential recordings during brief periods of coronary artery ligation in the dog: influence of adrenaline, beta blockade and alpha blockadeCardiovascular Research, 1988
- Passive properties and membrane currents of canine ventricular myocytes.The Journal of general physiology, 1987
- A Method for Simultaneous Epicardial Monophasic Action Potential Recordings from the Dog Heart in SituActa Pharmacologica et Toxicologica, 1984
- Electrophysiological effects of diltiazem, nifedipine and Ni2+ on the subepicardial muscle cells of canine heart under the condition of combined hypoxia, hyperkalemia and acidosisNaunyn-Schmiedebergs Archiv für experimentelle Pathologie und Pharmakologie, 1983
- Effects of Verapamil and Lidocaine on Changes in Action Potential Characteristics and Conduction Time Induced by Combined Hypoxia, Hyperkalemia, and Acidosis in Canine Ventricular MyocardiumJournal of Cardiovascular Pharmacology, 1982
- Effect of drugs on conduction delay and incidence of ventricular arrhythmias induced by acute coronary occlusion in dogsThe American Journal of Cardiology, 1977
- Influence of low extracellular pH upon the Ca inward current and isometric contractile force in mammalian ventricular myocardiumPflügers Archiv - European Journal of Physiology, 1976
- Supernormal phase of conduction in human heart demonstrated by subthreshold pacemakers.Heart, 1969
- Effects of ischemia and hypoxia on the specialized conducting system of the canine heartAmerican Heart Journal, 1961