Inhibition of mammalian ribonucleotide reductase by a dinucleotide produced in eucaryotic cells

Abstract
HS3, a highly phosphorylated dinucleoside originally purified from the fungus Achlya, has been isolated from Chinese hamster ovary cells undergoing glutamine starvation. The HS3 compounds obtained from the fungal and mammalian sources exhibited similar physical and chemical properties. This unusual dinucleotide may be an important regulator of eucaryotic ribonucleoside diphosphate reductase activity; for 50 μm HS3, isolated from either mammalian or fungal cells, significantly inhibited CDP reduction in Achlya or hamster cell preparations, but only marginally affected the activity of the enzyme from E. coli. Studies with HS3 isolated from Achlya and partially purified mammalian ribonucleotide reductase indicated that the compound noncompetitively inhibited the reduction of varying concentrations of the substrates CDP, ADP and GDP with Ki values of 23 μm, 14 μM and 16 μM respectively. These inhibitor concentrations are well below the estimated intracellular levels of HS3 in glutamine starved cells and suggest that HS3 inhibition of ribonucleotide reduction may be responsible for the rapid inhibition of DNA synthesis seen under these culture conditions.